DIMSEMs - diagonally implicit single-eigenvalue methods for the numerical solution of stiff ODEs on parallel computers
نویسندگان
چکیده
This paper derives a new class of general linear methods (GLMs) intended for the solution of stiff ordinary differential equations (ODEs) on parallel computers. Although GLMs were introduced by Butcher in the 1960s, the task of deriving formulas from the class with properties suitable for specific applications is far from complete. This paper is a contribution to that work. Our new methods have several properties suited for the solution of stiff ODEs on parallel computers. They are strictly diagonally implicit, allowing parallelism in the Newton iteration used to solve the nonlinear equations arising from the implicitness of the formula. The stability matrix has no spurious eigenvalues (that is, only one eigenvalue of the stability matrix is non-zero), resulting in a solution free from contamination from spurious solutions corresponding to non-dominant, non-zero eigenvalues. From these two properties arises the name DIMSEM, for Diagonally IMplicit Single-Eigenvalue Method. The methods have high stage order, avoiding the phenomenon of order reduction that occurs, for example, with some Runge-Kutta methods. The methods are L-stable, with the result that the chosen stepsize is dictated by convergence requirements rather than stability considerations imposed by the stiffness of the problem. An introduction to GLMs is given and some order barriers for DIMSEMs are presented. DIMSEMs of orders 2–6 are derived, as well as an L-stable class of diagonal methods of all orders which do not, however, possess the single-eigenvalue property. A fixed-order, variable-stepsize implementation of the DIMSEMs is described, including the derivation of local error estimators, and the results of testing on both sequential and parallel computers is presented. The testing shows the DIMSEMs to be competitive with fixed-order versions of the popular solver LSODE on a practical test problem.
منابع مشابه
On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملImplicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems
In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...
متن کاملOdeint - Solving ordinary differential equations in C++
Ordinary differential equations (ODEs) play a crucial role in many scientific disciplines. For example the Newtonian and Hamiltonian mechanics are completely formulated in terms of ODEs. Other important applications can be found in biology (population dynamics or neuroscience), statistical physics and molecular dynamics or in nonlinear sciences [1]. Furthermore, ODEs are used in numerical simul...
متن کاملSingly diagonally implicit Runge-Kutta methods with an explicit first stage
The purpose of this paper is to construct methods for solving stiff ODEs, in particular singular perturbation problems. We consider embedded pairs of singly diagonally implicit Runge-Kutta methods with an explicit first stage (ESDIRKs). Stiffly accurate pairs of order 3/2, 4/3 and 5/4 are constructed. AMS Subject Classification: 65L05
متن کاملRunge-Kutta Software for the Parallel Solution of Boundary Value ODEs
In this paper we describe the development of parallel software for the numerical solution of boundary value ordinary differential equations (BVODEs). The software, implemented on two shared memory, parallel architectures, is based on a modification of the MIRKDC package, which employs discrete and continuous mono-implicit Runge-Kutta schemes within a defect control algorithm. The primary comput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 7 شماره
صفحات -
تاریخ انتشار 1997